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Abstract. We discuss the phase transition in an Ising model with correlated disorder. Two
parameters describe the disorder: its variance and its finite correlation lengthscale. We show that
in this model, depending on the disorder parameters, one of two qualitatively different scenarios
for the transition applies. The first is a transition driven by thermal fluctuations around a
spatially homogeneous ground state. This is also found in systems with uncorrelated disorder.
The second scenario is a percolative one: locally ordered regions grow in the paramagnetic phase
and form an infinite cluster at the critical temperature. In contrast to the first scenario, thermal
fluctuations now occur around an inhomogeneous ground state. The dominating lengthscale is
not the correlation length of thermal fluctuations but the connectivity length of ordered regions.
Based on a discussion of the role of thermal fluctuations in the percolative scenario we identify
the parameter ranges in which the different scenarios apply.

1. Introduction

The renormalization group (RG) has become a standard tool in the theory of critical
phenomena. It provides very successful quantitative predictions for universal quantities
such as critical exponents and amplitude ratios which are accessible to experiments and
computer simulations. At the same time it is based on a simple physical picture which
also explains the phenomenon of universality: the partition function can be written as a
functional integral over thermal fluctuations around a spatially homogeneous ground state.
The correlation length of these fluctuations diverges as the critical temperature is approached.
Consequently all other scales of the system can be neglected. Microscopically different
systems show the same critical behaviour which depends only on very few characteristics
of the system, such as dimensionality and symmetry of the system and its order parameter.

This concept has also been applied successfully to disordered systems. Usually the
disorder is averaged over right at the beginning of the theoretical analysis, for example
using the replica trick. Then the same picture as in the ordered case is recovered, including
fluctuations around a spatially homogeneous ground state, and the RG procedure can be
used along the same lines as for ordered systems. This is even possible for some types
of disorder with scaling invariant, infinite-range disorder correlations [1–4]. Systems for
which this procedure is successful are often called ‘weakly’ disordered.

For disordered systems there are, however, only much less reliable numerical and
experimental results that can be compared with RG predictions. This is partly due to
difficulties in finding adequate mathematical models for particular physical disordered
systems. Generally, the frontier between ‘weak’ and ‘strong’ disorder can only be
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determined by the investigation of a particular physical problem. In several cases disorder
can be characterized by a set of parameters, and the critical behaviour of the disordered
system is very similar to the pure one where these parameters are zero. This kind of
disorder may well be called ‘weak’. But there are also several counterexamples where the
critical behaviour is changed qualitatively even for arbitrarily small nonzero values of these
parameters, e.g. the two-dimensional random field Ising model or the Anderson transition
in two dimensions.

In this paper we discuss a simple model in which the disorder is described by two
parameters, the variance of the disorder (which is often considered the only relevant disorder
parameter) and an additional (finite) correlation lengthscale of the disorder. We will show
that in this model two qualitatively different scenarios of the transition appear, a percolative
and a homogeneous one, depending on the ratio of the two parameters of the model. This
will allow a general discussion of the two scenarios and of a possible criterion to discern
the two.

In the percolative scenario, even aboveTc large ‘locally ordered’ regions appear where
the order parameter fluctuates around a nonzero value (however, theaveragevalue of the
order parameter is still zero aboveTc because both signs of the local order parameter
appear with the same probability in such a finite region). This leads to a picture of the
transition which is qualitatively different from the homogeneous one usually connected with
the RG approach: now there is a spatially inhomogeneous, temperature-dependent ‘ground
state’ of the system. Actually, there is a multiplicity of such states differing from each
other by the sign of the order parameter in disconnected ordered regions. A new relevant
lengthscale appears in addition to the correlation length of thermal fluctuations around the
inhomogeneous ground state: the size of locally ordered regions, which diverges as the
connectivity length of the percolation problem for the growing locally ordered regions.
We will refer to the two scenarios as ‘homogeneous’ resp. ‘percolative’ because of this
difference in the spatial structure of the ground state.

We will illustrate these points in some detail for a special version of this model
which permits an explicit analysis of the competition between statistical geometric disorder
fluctuations and thermal fluctuations of the order parameter near the phase transition. In
particular we will discuss the topological aspects of this competition. This will illustrate
why the usual RG treatment (with its approximation ofδ-correlated disorder) fails for the
corresponding values of the model parameters.

This paper is organized as follows. In section 2 we review some aspects of the standard
RG treatment of disordered systems that limit this approach to the case of weak, uncorrelated
disorder, as well as some approaches used to overcome this limitation for strongly disordered
systems.

In section 3 we introduce a general model of disorder characterized by two parameters.
It is worth noting that disorder in this model is not ‘strong’ as in some of the models
mentioned in section 2—the variance of the disorder is a small parameter, and the disorder
correlation length is finite, so no new diverging lengthscale is put in ‘by hand’. Earlier
treatments of disordered systems via a one-instanton approximation for the disorder-averaged
Hamiltonian are briefly reviewed and applied to our model; the limitation of this approach
to a temperature range away from the critical point is discussed.

In section 4 we analyse in detail a specialized version of the model introduced in
section 3; this model clearly exhibits a percolative transition into an inhomogeneously
ordered phase. The role of thermal fluctuations must be analysed together with the influence
of the temperature-independent, topological properties of the disorder; this is discussed in
section 4.2. At the end of section 4 we briefly discuss the generalization of these results to
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other versions of the two parameter model, and mention some reasons for the failure of the
Harris criterion to detect the deviation of the system’s behaviour from the ordinary scenario
dominated by thermal fluctuations. In the final section, 5, we summarize the main results
and show how they contribute to some current debates mentioned in section 2, including the
role of multiple ground states and replica symmetry breaking (RSB). We will also discuss
briefly the relevance of our results for the explanation of various recent experiments in
which two lengthscales were observed simultaneously near the magnetic phase transition in
Holmium, Terbium and even perovskites with a weakly first-order transition.

2. Limitations of the conventional RG approach

A basic assumption of the conventional RG method is that the (thermal) correlation lengthξ ,
which describes the characteristic lengthscale of thermal fluctuations of the order parameter,
grows without limit in the vicinity of the critical point. At first sight this seems to imply that
disorder with any (finite) correlations could effectively be modelled with a simpleδ-function
for the two-point correlation function of the disorder. In addition, the formal irrelevance of
higher cumulants of the quenched disorder probability distribution within the framework of
the commonly usedε = 4−d expansion, which holds at least in the limitε→ 0, has led to
the conclusion that the critical behaviour of ‘weakly’ disordered systems can be described
approximating the disorder as Gaussian andδ-correlated [5].

So investigations of the critical behaviour of ‘weakly’ disordered systems are usually
based on a very simple model Hamiltonian [6]

H = HGL[ϕ] +
∫

ddr {1τ(r)ϕ2(r)} (1)

where the Ginzburg–Landau Hamiltonian for the pure system is given by

HGL[ϕ] =
∫

ddr

{
1

2
(∇ϕ)2+ r0

2
ϕ2+ 1

4
λ0ϕ

4

}
. (2)

The second term in (1) describes the disorder.1τ(r) is sometimes referred to as a random
variation of the ‘local reduced temperature’τ(r) = T−Tc(r)

T
(0)
c

= r0 + 1τ(r), becauser0
is connected with the reduced temperature in the undisturbed case. Using this suggestive
terminology the local critical temperature then varies asTc(r) = T (0)c (1− 1τ(r)). The
random variable1τ(r) is usually assumed to be Gaussian andδ-correlated, so

〈τ(r)〉 = r0; 〈1τ(0)1τ(r)〉 − 〈1τ(r)〉2 = u0δ(r). (3)

Here u0 is a measure of the defect ‘strength’. In this model it is the only parameter
characterizing the disorder. Without loss of generality we can assume that〈1τ(r)〉 = 0.

Then the standard replica trick is applied to perform the average over disorder
configurations, and a translationally invariant effective Hamiltonian is recovered. The
further RG treatment is very similar to that of pure systems [6]. The appearance of a
new (‘disorder’) stable fixed point in this treatment is considered as a reliable proof for the
validity of the general assumption that the same homogeneous scenario of critical phenomena
[7] holds for pure and disordered systems; it can be used to justify the simplified model
(1)–(3) in a self-consistent way [8].

Correspondingly it was concluded that the free energy of a wide class of ‘weakly’
disordered systems has a singularity at a critical temperatureT = Tc. This Tc may differ
from that of the pure system, but the transition will remain ‘sharp’, not smeared out. Near
this point the free energy is expected to display scaling as in the case of pure systems. The
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difference in the critical behaviour of pure and disordered systems is limited to changes in
the values of the critical exponents which are now determined by a new, stable ‘disorder’
fixed point. As predicted by the phenomenological Harris criterion [9] and confirmed by
explicit RG calculations even these changes only occur if the critical exponentα of the
specific heat is positive for the undisturbed model.

The RG results have one strange feature, however: all the RG flow trajectories of
the renormalized verticesλ(t), u(t) starting inside the ‘physical’ regionλ0, u0 > 0 reach
the stable (disorder) fixed point [10]. So even in the case of a large initial disorder vertex,
0< λ0� u0 the critical behaviour should asymptotically be the same as for the conventional
‘weak’ disorder caseλ0� u0.

Of course the range of applicability of (1)–(3) can be restricted to initial valuesλ0� u0

by an appeal to physical arguments. But if we stay within the formal framework of the RG
itself there is no inherent evidence for any nontrivial separatrix in the(λ, u)-plane between
‘weakly disordered’ systems and others whose critical behaviour is not controlled by the
conventional disorder stable fixed point. In some sense the critical behaviour predicted
by the standard RG treatment is ‘too universal’ to be realistic for systems with arbitrary
disorder parameter values, including strong disorder.

From a physical point of view it is clear that in the limit of very strong fluctuations of
τ(r) the phase transition may differ qualitatively from the homogeneous scenario. In the
case of the model (1)–(3) a new transition scenario for strong disorder has been discussed
very early in the context of dirty superconductors [11] and dirty magnets or alloys [12].

In both cases it was assumed that in regions whereτ(r) is negative, i.e. in the deepest
‘wells’ of the random ‘potential’τ(r), nuclei of the ordered phase may appear even far
above the disorder-averaged critical temperatureTc = 〈Tc(r)〉. This is possible if the free
energy gained by the formation of such nuclei is much larger thankBTc. Far aboveTc these
nuclei are far apart from each other; however, at the edges of the nuclei the order parameter
only vanishes exponentially over the thermal correlation lengthscaleξ , and the overlap of
the edges of neighbouring nuclei leads to an effective interactionV (r) = V0 exp(−r/ξ)
between them [13].

This interaction favours nuclei with equal signs of the order parameter, and it has been
postulated that interacting nuclei have the same sign of the order parameter if they are a
distancer < r̃ apart, wherẽr is given by

V (r̃) = kBT . (4)

This requires a large interaction,V0 � kBTc, so it can only appear in strongly disordered
systems.

If nuclei less thañr = r̃(T ) apart have the same sign of the order parameter, the phase
transition problem is reduced to the continuous percolation problem [14] for spheres with a
radiusr̃.

For some types of strongly disordered materials such an approach is quite appropriate.
However, these arguments and a condition such as (4) almost completely neglect the role of
thermal fluctuations. On the other hand, in ‘weakly’ disordered models thermal fluctuations
play a crucial role—this is the very basis for the homogeneous scenario which allows the
standard RG treatment including the replica trick. Therefore one would like to have an
explicit criterion which allows us to determine the character of the transition in a given
disordered solid—transition into a homogeneous phase driven by thermal fluctuations or
percolative transition into an inhomogeneous phase formed by interacting ‘nuclei’ of the
ordered phase.

A first step towards such a criterion was made by Bulaevskiiet al [15] in an investigation
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of a very dirty superconductor near the Anderson localization threshold (where both disorder
and thermal fluctuations are strong enough to be relevant). They have shown that in
this system isolated nuclei of the ordered phase are stable against thermal fluctuations
if λ0 < λc = Au0 with a prefactorA of order 1. If λ0 > λc thermal fluctuations are too
strong and nuclei of the ordered phase cannot be formed. However, their approach was
limited to the temperature rangeτ � u2

0, so the true nature of the transition could not be
established.

Another discussion of the model (1)–(3) withλ0 6 u0 was in [13], where the critical
behaviour close to the tricritical point was considered in a more general context not restricted
to a particular case of the superconducting transition. There a transition of a percolative
type with the formation of isolated ‘droplets’ of the ordered (low-temperature) phase was
found, too, in contrast to that predicted by the standard RG treatment.

However, the reason for this qualitative difference has apparently not been discussed
in [13] nor elsewhere. This may partly be due to the amount of additional approximations
and assumptions made in [13]. In particular their analysis uses(ln(u/λ))−1 as a small
parameter. The success of this procedure may depend significantly on their choice of a
particular (simplified) model; it is not clear that it will also apply to a general disordered
material near the tricritical point.

Quite recently, however, the validity of the standard RG procedure for the model (1)–(3)
has been questioned again, [16] even for ‘weakly’ disordered systems. The existence of
many nearly degenerated ground states of the system was discussed as a physical reason
for the appearance of RSB terms in the Hamiltonian. This applies even to the model (1)–
(3) with ‘weak’ disorder (for ‘strongly’ disordered systems solutions with RSB have been
discussed before [17–20]). Under several assumptions a mechanism for the appearance
of RSB interactions in the model (1)–(3) was demonstrated and the corresponding 1-step
RSB solution of the RG equations was determined. But the stability of the RSB solutions
(including multistep solutions) is very questionable [16]. The same may be said about the
validity of the particular mechanism giving rise to RSB terms in the effective Hamiltonian
and their explicit form. So although the general ideas presented in [16] seem to be reasonable
and very attractive, the whole problem remains unsettled.

3. Two-parameter model of correlated disorder

The model we consider is a variation of the standard one in (1)–(3), but (3) is generalized
to a nontrivial correlation function for the Gaussian disorder,

〈τ(r)〉 = r0; 〈1τ(0)1τ(r)〉 − 〈1τ(r)〉2 = τ 2
1G(r/R0) (5)

with a correlation functionG(x) ≈ 1 for x 6 1 andG(x)→ 0 for x →∞. So disorder is
characterized by two parameters: the variance of the disorder fluctuations,τ1, and the large,
but finite correlation lengthscale of the disorder,R0. Referring to the latter parameter we
will also call the model (1), (2), (5) the large-scale (LS) model. The two parameters can be
compared if we define a temperature scale corresponding toR0 (measured in terms of the
lattice spacinga) via

τ2 = (a/R0)
2. (6)

At this temperature the mean-field thermal correlation length reaches the valueξ(τ2) =
aτ
−1/2
2 = R0.
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The influence of thermal fluctuations can be estimated with a third parameter not related
to the disorder: the Ginzburg–Levanyuk parameter

τG =
(
λ

ad

)2/(4−d)
(7)

which limits the critical region toτ 6 τG. This is discussed further at the end of section 4.3.
In the following analysis we will see that for different values of the ratioτ2/τ1 different

results appear. We will start our analysis of possible phase-transition scenarios outside of
the critical region. Of course, even in this region, far above the phase-transition temperature
of the sample as a whole, nuclei of the low-temperature phase may appear in regions with
large, negative values of1τ(r).

3.1. One-instanton approximation

Far aboveTc one can calculate the free energy of the system with rather rare, isolated
ordered regions using the replica trick for the disorder average which is denoted by〈〉:

F = −kBT 〈lnZ〉 = −kBT lim
n→0

1

n
(〈Zn〉 − 1). (8)

A cumulant expansion of the terms in〈Zn〉 leads to the familiar replica Hamiltonian for

〈Zn〉 =
∫ n∏

α=1

Dϕα exp(−Hn) (9)

Hn =
∫

ddr

( n∑
α=1

HGL[ϕα]

)
− τ 2

1

∫
ddr ddr′

n∑
α,β=1

G(r − r′)ϕ2
α(r)ϕ

2
β(r
′) (10)

whereHGL[ϕ] is given by (2).
Outside of the critical region this functional integral can be evaluated in the saddle-

point approximation. The main contribution toF comes from solutions of the saddle-point
equation

(−∇2+ r0)ϕα(r)+ λϕ3
α(r)− τ 2

1

n∑
β=1

∫
ddr′G(r − r′)ϕ2

β(r
′)ϕα(r) = 0. (11)

A simpler version of this equation, withλ = 0, appears in the analysis of the density of
states deeply in the gap of a disordered semiconductor [21, 22]. In this case equation (11)
is isotropic in replica space, and one can look for solutions

ϕα(r) = n̂αφ(|r − r0|). (12)

Here n̂α is an arbitrary vector of unit length in replica space andφ is a function describing
the spatial form of the instanton.

In the caseτ2� τ1 (smallR0) two types of solutions can be found [22]:

φJS(r) ∼ exp(−r2/l2) with l ≈ (R0ξ)
1/2 for τ � τ2 (13)

and

φL(r) ∼ 1

r
exp(−r/ξ) for τ � τ2. (14)

Both solutions contain the thermal correlation lengthξ = a/τ−1/2. The latter,φL, is the
same as in a system withδ-correlated disorder, [21] while the former,φJS , only appears
due to disorder correlations asG(r) 6= δ(r).
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The corresponding actions areH [ϕSJ ] ∼ (τ/τ1)
2 and H [ϕL] ∼ (τ/τs)

2−d/2 with
τs = τ1(τ1/τ2)

d/(4−d). For very largeτ the action is dominated by the saddle-point solution
(13); at τ ≈ τ2 the lengthscalesl and ξ as well as the actionsH [ϕ] characterizing the
solutions (13) and (14) are roughly equal, so a crossover occurs to behaviour dominated
by solutionsϕL for τ < τ2. Below this crossover temperatureτ2 the system’s behaviour
coincides with the limiting behaviour forτ2/τ1→∞, i.e. theδ-correlated disorder case (in
the electronic problem this leads to the well known Lifshitz form of the tail in the density
of states [21]).

For τ2 � τ1 the finite scale of the disorder correlations only plays a role aboveτ2.
However, we will be interested in the opposite limit,τ2� τ1 (i.e. largeR0). Here there is
no crossover to the Lifshitz result forδ-correlated disorder, and the appropriate saddle-point
solution isϕJS in the whole range of applicability of the one-instanton treatment. This
solution explicitly contains the disorder correlation length; it can obviously not be found if
the approximation ofδ-correlated disorder is used.

Of course, in the doped semiconductor problem the one-instanton approximation is
limited to the region far away from the mobility edge, i.e. in our notation to the region
τ > τ1 in the caseτ1 > τ2 andτ > τs (defined above) in the opposite caseτ1 < τ2.

These considerations can be extended to the full equation (11) with a nonzeroλ-term
if one notes thatλ→ 0 corresponds to the limitτ1, τ2� τG in the general phase transition
problem under consideration. This limit and the breakdown of the one-instanton approach
asλ grows larger than a critical value will be discussed in the next section.

3.2. Thermal fluctuations in the one-instanton approach

The introduction of a thermal fluctuation term,λ 6= 0, introduces a cubic anisotropy (inn-
dimensional replica space) into equation (11). For the conventional model withδ-correlated
disorder, (1)–(3), this case has been discussed in [15]. Without performing all the elaborate
calculations used in [15] in detail we will show how similar results appear in the case of
correlated disorder.

In analogy to (12) solutions of (11) can be written as

ϕB(r) = n̂γ
(

τ

u− λ
)1/2

χ(x) (15)

with x = r/ξ andξ = aτ−1/2. However, due to the cubic anisotropyn̂γ must now be one
of the n unit vectors spanning replica space. In the case ofδ-correlated disorder, for large
distances,x →∞, χ(x) ∼ 1

x
exp(−x). The action for such an instanton solution will be

S[ϕB ] ∼ (τ )1/2

u− λ . (16)

Obviously for λ → 0 the Lifshitz solutionϕL found above is recovered; but (16) shows
that for nonzero values ofλ the action (i.e. free-energy gain from the creation of an ordered
nucleus)S[ϕB ] can still be large, and one-instanton solutions must be taken into account.

The role of thermal fluctuations in the one-instanton approach can be discussed in great
detail following the treatment in [15]. However, here we are only interested in an estimation
of a critical value ofλ for which the one-instanton approach breaks down because thermal
fluctuation become too strong. For this purpose it is enough to check whether the solution
of the saddle-point equation is well behaved. For the solution (15) orδ-correlated disorder
this leads to the requirementλ < u; for the case of correlated disorder atτ � τ2 the
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analogous criterion is easily found to be

λ > λc ≈ τ 2
1

(ττ2)d/4
= τ 2− d

2
1

(
τ 2

1

ττ2

)d/4
. (17)

This describes a critical valueλc which depends on temperature.
In the caseτ2 � τ1 as τ → τ2 there is a crossover from the one-instanton

solution to theδ-correlated disorder approximation as discussed above; atτ = τ2 we get
λc = λ′c = τ 2

1 τ
−d/2
2 = τ 2

1R
d
0 = u in agreement with the above results forδ-correlated case.

In the second possible case,τ � τ1� τ2, there is no crossover to theδ-correlated case,
and close toτ = τ1 (at whichS[ϕJS ] ≈ 1 and the one-instanton approximation is no longer
applicable) one finds

λc = λ′c = τ
2− d

2
1

(
τ1

τ2

)d/4
. (18)

Note thatλ′c � λ′c, so in the caseτ1 � τ2 the stability of the ordered droplets against
thermal fluctuations is larger than in the caseτ1� τ2.

For all types of disorder, as long asλ < λc with the appropriateλc, thermal fluctuations
do not destroy the locally ordered regions that are the basis of a possible percolative
transition. Of course, even in this case of stability against thermal fluctuations the one-
instanton approach breaks down closer to the transition, so the real character of the transition
cannot be established using the one-instanton approximation for the treatment of the replica
Hamiltonian.

At the moment there seem to be no conclusive results about the nature of the
transition asTc is approached; both a physical discussion of the mechanism that replaces
the homogeneous scenario of the transition driven by thermal fluctuations and explicit
quantitative results are lacking. In the next section we will address these issues in the
context of a specific model in which they can be discussed and illustrated in a clear and
accessible way.

4. The LS cell model

As we have seen in the preceding section, ifτ2/τ1 is small a new, percolative type
of transition may be expected from the one-instanton approximation which applies at
temperatures significantly aboveTc. We now want to illustrate this transition closer to
criticality. To allow a more detailed discussion we start with a specific version of the LS
model (1), (2), (5).

We assume that the random potentialτ(r) is formed by regions of sizeR0 over which
τ is constant. These regions or ‘cells’ are the elementary cells of a superlattice with lattice
scaleR0. To eliminate some complications not connected with the general picture of the
percolative transition we assume thatτ(r) changes its value at the borders between such
areas over a distance of the order of the lattice constanta (this requirement will be relaxed
in section 4.3). Obviously such a system leads to a correlator as that given in (5). We want
to discuss the case

τ2� τ1 i.e. R0� aτ
−1/2
1 . (19)

Taking the probability distributionP[1τ(r)] to be Gaussian,P[1τ(r)] ∝ exp
{− 1

2τ 2
1

∫
ddr 1τ 2(r)}, simplifies the following considerations. However, they remain valid

for a wide class of one-peak distributions with a finite second moment. A Gaussian
distribution for the disorder configurations{τ(r)} also implies a Gaussian probability
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P̃ (τ (r)) ∝ exp{− 1
2τ 2

1
1τ 2} that the random temperature atr has the valueτ(r) = r0+1τ .

This can be rewritten in terms of the ‘local transition temperature’Tc = Tc(r) =
T (0)c (1−1τ(r)) as

P(Tc) ∝ exp

{
− 1

2τ 2
1

(
T (0)c − Tc
T
(0)
c

)2
}
. (20)

4.1. Zero approximation inτ2/τ1

The cells in whichτ(r) is constant can be classified as ‘typical’ or ‘untypical’. ‘Typical’
cells are characterized by the inequality

|τ(r)| > τ2. (21)

This implies that the local thermal correlation lengthξ corresponding to the reduced
temperature within the cell is smaller than the cell itself,

ξ(r) = a|τ(r)|−1/2 < R0. (22)

So typical cells are far away from (local) ‘criticality’; depending on the sign ofτ(r) they
are in the high-temperature (paramagnetic) phase or the low-temperature (ferromagnetic)
phase.

Although one may describe cells with negativeτ as locally ordered regions, of course
no real phase transition has taken place there (a true phase transition is only possible in
an infinite system); the thermodynamic average of the magnetization within these cells will
be zero. But most of the time the spins in a typical cell will be aligned parallel to each
other. They will only flip to a different direction together and after an activation time that
is necessary to overcome the energy barrier between up and down states of the cell—if
ξ < R0 a spontaneous thermal fluctuation of rangeξ is not sufficient to flip the state of the
whole cell; this requires going through an intermediate state with a domain wall separating
the cell, and in systems with discrete order parameter the energy cost for such a domain
wall is finite (continuous order parameters are discussed in the appendix). ‘Nontypical’
cells, however, are ‘at criticality’, as formallyξ(r) = a|τ(r)|−1/2 > R0. Here thermal
fluctuations extend over the whole cell, so it cannot be considered to be in an ordered state
even if τ(r) < 0.

It is easy to check that the majority of cells fulfil (21), justifying the name ‘typical’.
The probabilitypt that a given cell is typical at the temperatureT is given by

pt(T ) = P(|τ(r)| > τ2) =
∫ −τ2

−∞
P̃ (τ )dτ +

∫ ∞
τ2

P̃ (τ ) dτ. (23)

Correspondingly the probabilitypu that it is untypical is

pu(T ) =
∫ τ2

−τ2

P̃ (τ ) dτ =
∫ T+τ2T

(0)
c

T−τ2T
(0)
c

P (Tc)
dTc

T
(0)
c

≈ 2τ2P(Tc = T ). (24)

From figure 1 it is easy to see thatpu/pt ∼ τ2/τ1 (see also the argument preceding
equation (30)), so at any given temperaturepu(T )� pt(T ), and as a ‘zero’ approximation
in the small parameterτ2/τ1 the untypical cells can be neglected. Their influence will be
discussed further below.

In this approximation the typical cells in the ferromagnetic state form the randomly
distributed sites of the standard percolation problem on the superlattice formed by the cells
of sizeR0. As shown in the appendix, domain walls within typical cells have an exceedingly
high free-energy cost. So the order parameter in neighbouring, typical cells with negative
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Figure 1. Probability distributionP(Tc) for the local critical temperatureTc(r). The shaded
area corresponds to the fraction of untypical cells with|τ(r)| < τ2.

τ(r) must have the same sign, and the clusters of the percolation problem on the superlattice
will automatically form magnetically ordered regions, too (of course, the same caveats apply
to the expression ‘local order’ in such clusters as to ‘locally ordered’ typical cells).

In the limit τ2/τ1→ 0 the volume fraction of cells in the ferromagnetic state is

Pf (T ) =
∫ 0

−∞
P̃ (τ ) dτ =

∫ +∞
T

P (Tc)
dTc

T
(0)
c

. (25)

As T decreases the average size of clusters formed by these ferromagnetic cells,Rp, grows
as

Rp ∼ R0|Pf (T )− pc|−νp (26)

whereRp is the correlation length,νp the correlation length exponent andpc the percolation
concentration of the corresponding percolation problem.

This percolation scenario of the phase transition has first been considered by Ginzburg
[23]. He argued that on every cluster of ferromagnetic cells the sign of the order parameter
must be constant, as such clusters essentially were ‘macroscopic’ objects. Thus, Ginzburg
considered the temperatureTp corresponding to the (geometric) percolation threshold of the
ferromagnetic clusters given by

Pf (Tp) = pc (27)

to be the transition temperature at which a nonzero value of the macroscopic magnetization
of the sample appears (see figure 2). Correspondingly, the critical exponents are those of
the percolation problem.

The percolative character of the transition, which comes from the formation of magnetic
domains formed by many locally ordered cells of sizeR0, can obviously not be detected
in the one-instanton approximation for the replica Hamiltonian presented in the preceding
section—as a kind of coherent potential approach the one-instanton approximation can never
take into account strong correlations between neighbouring ordered cells.

In this section as a zero approximation we completely neglected the role of the small,
but finite fraction of untypical cells. However, it is clear that the qualitative picture of the
transition will not be changed by their inclusion—it will still be possible to consider the
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Figure 2. Temperature scale with relevant temperatures and probability that the local critical
temperatureTc(r) equalsT (three-dimensional system, for more details see text):T

(0)
c is the

transition temperature of the undisturbed system (for1τ(r) ≡ 0). As the temperature drops
towardsTDW clusters of locally ordered cells begin to form; forTPT < T < TDW the distance
between broken (untypical) red sites is smaller than the size of locally ordered clusters, so
these clusters are split into several distinct ferromagnetically ordered domains; atTp the regions
with τ(r) < 0 percolate; the shaded area corresponds to the critical concentrationpc of the
continuous percolation problem of regions withTc(r) > T ; TPT is the real phase-transition
temperature. AtTPT an infinite, monodomain ferromagnetically ordered region appears on
the percolating cluster of regions withτ(r) < 0. These temperatures are related as follows:
Tp − TPT ≈ TDW − Tp ≈ τ2Tp ; Tp − T (0)c ≈ τ1T

(0)
c , whereτ1 is the variance ofP(Tc) and τ2

is defined in equation (7).

formation of macroscopic order as a percolation problem; we will just not be able to treat
all cells with negativeτ(r) as sites of the percolation problem.

In fact, because in the LS cell model thermal fluctuations enter the picture only via the
untypical cells, a careful analysis of their role will allow us to discuss the competition
between the quenched disorder, a geometric, temperature-independent property of the
system, and thermal fluctuations as macroscopic long-range magnetic order appears in the
system.

4.2. Cluster formation and red sites

Stanley, Coniglio and others [24, 25] showed that near the percolation threshold ‘red sites’
(resp. ‘red bonds’) play an important role for the geometrical structure of percolation clusters.
These sites are located such that removing one of them splits a cluster into two disconnected
parts. The numberN1 of such red sites on a cluster with the typical sizeRp diverges as
[25]

N1 ∼ (p − pc)−1. (28)

Following Ginzburg’s simplified treatment, the transition occurs when the clusters formed
by cells with τ(r) < 0 percolate. Macroscopic order on such a percolation cluster may
still be destroyed, however, by the appearance of domains with varying sign of the local
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magnetization [26]; the red sites of the percolation cluster are obviously the most likely
locations of domain walls between these domains. Although the proportion of red sites that
are untypical is small,pu � pt , the probabilitypDW = exp(−1F) for the existence of a
domain wall is much larger in an untypical red site, because the free-energy cost1Fu for
a domain wall in an untypical red site is smaller by a factor of 1/(R

√
τ1)

3 than1Ft for a
typical red site (this important point is demonstrated in detail in the appendix). So if at a
certain temperature locally ordered clusters are split into different domains at all the domain
structure will be dominated by domain walls located in untypical red sites.

For our problem bothN1 and pu are temperature dependent, and one can define a
crossover temperatureTDW via

pDW(TDW)pu(TDW)N1(TDW) ≈ 1. (29)

At TDW the smallness ofpu is just compensated by the divergence ofN1, whilepDW is large
and not strongly temperature dependent. ForT > TDW on average there is less than one
domain wall per cluster, so the (geometric) clusters of the percolation problem of cells with
negativeτ can be identified with the (magnetic) clusters of the phase-transition problem that
are characterized by having one constant sign of the order parameter over the whole cluster.
However, belowTDW an increasing number of untypical red sites will contain domain
walls. These will divide the geometric clusters into several distinct magnetic domains, and
the magnetic correlation length (average size of domains)RD will be much smaller than the
mean cluster sizeRp of the geometric percolation problem. In particular, at the temperature
Tp defined by (27) the mean value of the magnetization over a macroscopic sample is still
zero and the susceptibility finite, in contrast to Ginzburg’s prediction [23].

Equation (29) can be used to estimateTDW. Instead of deriving explicit expressions for
a particular distributionP(Tc) we will write down a general estimate which holds for all
nonsingular, one-peak distributions of the type shown in figure 1.

According to (24)pu(TDW) ∼ τ2P(TDW). Due to (19) we haveτ2� τ1, and the relevant
temperaturesTp, TDW andTPT (see below) will all be of the same order asT1 = T (0)c (1+τ1)

(figure 1). Becauseτ1T
(0)
c is the variance ofP(Tc) we have τ1P(T1) ∼ 1, and the

probabilitiesP(T ) for T = T1, Tp, TDW andTPT are all of order 1/τ1. Sopu(TDW) ∼ τ2/τ1.
As Pf (T ) given in (25) changes slowly forT ≈ T1, and using the definition ofTp in (27),
we can setN1(TDW) ∼ (Pf (TDW)− pc)−1 ∼ (TDW − Tp)−1 to find

TDW = Tp(1+ bτ2/τ1) (30)

whereb is a numerical factor of order 1.
This crucial influence of untypical red sites on the magnetic structure of the system for

temperatures belowTDW obviously raises questions about the role of multiply connected sites
[27] (which split a cluster into disconnected parts only if all of them are cut simultaneously).

Of course, domains can also be created by cutting multiply connected sites. This
possibility can be accounted for generalizing (29) to

∞∑
m=1

Nmwm ≈ 1. (31)

Herewm ∼ pmu = (τ2/τ1)
m is the probability that allm sites which form one multiply

connected site are untypical.Nm is the average number ofm-connected sites, which
depends on temperature viap in analogy to (28). The probabilitypDW is not written
explicitly because in untypical cells domain walls are very probable,p

(u)
DW ≈ 1, while they

do not appear in typical cells (see the appendix). This is also why all of them sites must
be untypical—even one typical site among them would make the free energy cost of the
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domain wall as a whole prohibitively large. When condition (31) holds, the structure of
the ‘geometric’ clusters of the percolation problem for ordered cells will significantly differ
from the structure of the magnetic domains which is important for the phase transition.

Decreasing the temperature belowTp, the infinite percolating cluster of cells with
negativeτ (which still contains many disconnected magnetic domains) will grow and form
a superlattice with a characteristic lengthscaleRp(T ) ∼ (Pf (T )−pc)−νp . At a temperature
TPT < Tp (figure 2) the volume fraction oftypical cells with negativeτ , which are already
in the ferromagnetic state, will reach the percolation concentrationpc. Taking into account
untypical cells, the analogue of (25) for small but finite values ofτ2/τ1 is the volume
fraction of typical ferromagnetic cells withτ(r) < −τ2:

P
(t)
f (T ) =

∫ −τ2

−∞
P̃ (τ ) dτ =

∫ +∞
T+τ2T

(0)
c

P (Tc)
dTc

T
(0)
c

. (32)

Just asTp was found from (27) in the ‘zero’ approximation in the small parameterτ2/τ1,
now in the first approximation inτ2/τ1 the temperatureTPT can be determined from

P
(t)
f (TPT) = pc (33)

so TPT is shifted below the geometric percolation thresholdTp of regions withτ(r) < 0.
Obviously in analogy to (30) this shift is proportional to the small parameterτ2/τ1,

Tp − TPT ≈ τ2T
(0)
c P (Tc = TPT) ∼ τ2/τ1. (34)

At this temperature one infinite domain of ferromagnetic cells with the same value of the
order parameter appears, i.e. the magnetization of a macroscopic sample becomes nonzero.
This is the real magnetic phase transition point.

It is interesting to note the analogy between the percolative transition in the LS cell
model and the transition in the standard diluted Ising model near theT = 0, p = pc
bicritical point. The ordered cells of the LS cell model correspond to the occupied sites in
the diluted Ising model, and the small probabilitywm for a domain wall cuttingm multiply
connected, untypical sites corresponds to the small probability exp(−2mJ/kBT ) to break
m bonds between Ising spins.

For the diluted Ising model the phase transition line near the bicritical point has been
shown to be [28]

1

p − pc exp(−2J/kBT ) = C. (35)

For the two-dimensional bond-diluted Ising model [28]C = 2 ln 2. In the general case, the
phase transition line is determined in analogy fromφ(x) = constant with an appropriate
scaling functionφ, and the scaling variable given byx = 1

p−pc exp(−2J/kBT ).
Now in any percolation problem, the average numbersNm of (m-fold) multiply

connected sites on a cluster with the typical sizeRp will be of the form

Nm(p) ∼ αm(p − pc)−1m (36)

asp → pc. Herepc is the percolation concentration, which depends on the percolation
problem under consideration, andp is the volume fraction of occupied sites† i.e. in our case
the volume fraction of cells with negativeτ(r). For singly and doubly connected bonds it
has been shown that [24]11 = 1, and [27, 30]12 = 2.

† For some deterministic fractals, which have been used to model typical configurations of the infinite percolating
cluster [27], it is easy to check that1m = m for all m. These fractals are introduced in [29].
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With this form of theNm, condition (31) is an expansion of the scaling functionφ,
allowing a physical intepretation of the terms that appear inφ: they come from the various
independent ways to produce a domain wall by cuttingmultiply connected sites.

On the other hand, result (35) can only be reproduced from condition (31) if in (36) we
have1m 6 m for all m. It is remarkable that this condition concerns the1m, i.e. a purely
geometric property of the percolation cluster, although it was derived via the analysis of a
thermal phase transition on the percolation cluster.

The role of domain walls is changed qualitatively if we consider models with spin
dimensionm > 1 (like theXY - or Heisenberg model). Here, long-range magnetic order
may not only be destroyed by domain walls with a finite width (and energy cost), but also
by arbitrarily low-energy extended fluctuations of the order parameter (spin waves). On
percolation clusters a transition that breaks a continuous symmetry is generally impossible
[31]; if the temperature drops further the infinite cluster has the spatial dimensionality of
the imbedding space on lengthscales larger than the connectivity lengthRp, so one might
expect a transition into an inhomogeneously ordered phase for these models only in the
temperature range whereξ > Rp. On the other hand, domain walls are as difficult to create
as in the Ising model for Pott’s models [24] withq > 2. One may even speculate whether
a crossover to a percolative transition can explain the rounding of the first-order transition
in pure Pott’s models withq > 4 to a continuous transition in the presence of quenched
disorder [32].

4.3. Generalization of the LS cell model

In the preceding section the untypical regions where thermal fluctuations may play a
significant role, i.e. where|τ(r)| < τ2, had a minimal scaleR0. In a more natural, smoothly
varying random potentialτ(r) with correlator (5) this simplification is lost.

Now the disorder correlation scaleR0 still exists, but the disordermay also vary over
shorter lengthscales. This does not influence the general, percolative nature of the transition
or the zero-order analysis presented in section 4.1. The lowest-order influence of the small
parameterτ2/τ1 is slightly changed, however, because the condition for a spatial region to
be considered as ‘untypical’, which was simply given by (21) before must now be modified.

This can be done in a self-consistent way. We estimate the sizel of an untypical region
around a pointr0 whereτ(r0 = 0):

l(r0) 6 ξ(r0± lei/2) (37)

whereei are unit vectors. In the preceding section it has been shown that for the magnetic-
order correlations on locally ordered clusters only untypical regions at red sites (including
multiply connected sites) will be significant. The average number of such sites will scale as
in (36)—this is a topological property of the percolation problem. However, the probability
for such a site to be untypical will be different from the case considered above: untypical
red sites now appear at saddle points of the random potentialτ(r), so typically the sizelm of
an untypical region around a saddle pointr0 whereτ(r0) = τ ′(r0) = 0 (with τ ′ = dτ/dr)
will be given according to (37) by

lm = (τ ′l2m)−1/2 = (τ1τ2)
−1/4 (38)

where we have usedτ ′ ≈ τ1/R
2
0. The dimensionless parameterτm := 1/l2m = (τ1τ2)

1/2 can
now be used to estimate the fractionp̃u of untypical sites as

p̃u ∼ τm/τ1 = (τ2/τ1)
1/2. (39)
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This differs from the resultpu = τ2/τ1� p̃u found above for the LS cell model, butp̃u is
still a small parameter, and the derivation ofTDW presented above remains essentially the
same, withp̃u replacingpu.

It is clear that the phase-transition scenario remains percolative in the more general
model: the basis for the formation of locally ordered clusters and of domain walls within
these clusters is a topological (and universal) property of the underlying percolation problem,
namely the distribution of ordered resp. multiply connected sites. Relaxing the requirements
for the disorder from a superlattice based structure to a smoothly varying random potential
only changes the percolation problem from a lattice to a continuous one.

There is one additional feature in the more general model which has been suppressed
in the LS cell model: in the general LS model with smoothly varying ‘localTc’ all locally
ordered regions have a surface layer (with finite thickness) whereτ(r) ≈ 0. This surface is
at local criticality, so within this surface layer magnetic fluctuation correlations decay very
slowly along directions perpendicular to the surface. Parallel to the surface correlations
may persist along the whole critical surface.

At the phase-transition temperatureTp the surface is a fractal object that extends through
the whole system just as the infinite-ordered cluster itself. Therefore we expect a surface
fluctuation contributions to physical quantities such as the specific heat. If the correlation
length of thermal fluctuations in the surface layer diverges exactly atTp such contributions
may even be singular, so for a complete description of all thermodynamic properties of the
system the surface thermal fluctuations remain to be be accounted for. Moreover, we expect
that these fluctuations play an important role in the crossover between the homogeneous
and the percolative scenario as the disorder parameters are varied.

So far we have used the mean-field values for critical exponents such asν = νMF = 1
2.

Obviously this is possible if the critical region of the pure system is so narrow that
τGi � τ2, τ1, so all the discussions above refer to temperatures outside of the region of
critical thermal fluctuations. We will now discuss briefly the changes that appear when
τ2� τGi � τ1 or evenτ2� τ1� τGi .

As we have seen above, the transition occurs atτ = τ1(1− O(
√
τ2/τ1)). In the case

τ2 � τGi � τ1 for τ ≈ τ1 the fluctuation contribution is still small and the disorder plays
the dominating role. So, up to the phase-transition point the system is not inside the region
of critical thermal fluctuations and the mean-field exponents can be used.

In the second case,τ2� τ1� τGi , asτ → τ1 we are inside the critical region. In this
case the (local) correlation length of thermal fluctuations will be given byξ ∼ τ−ν with a
critical exponentν 6= νMF. Then the definition of the temperature scaleτ2 associated with
the disorder dorrelations will have to include the nontrivial exponent, so (6) will be replaced
by

τ2 = (a/R0)
1/ν . (40)

However, this change will only influence the numerical values of quantities that depend on
τ2; asν will be at least roughly equal to12, the qualitative picture of the transition will not
change, and the results of this section will still hold withτ2 now defined via (40) instead
of (6).

4.4. Failure of the Harris criterion and the standard RG

For the pure Ising modelα is positive, and the Harris criterion [9] indicates that the disorder
will be relevant. There is no indication of the percolative critical behaviour of the LS model
described in the previous section, though. From the Harris criterion alone, such an indication
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cannot be expected, as it only demonstrates the inconsistency of a description of the system
using the pure critical exponents. Explicit RG calculations would not lead to any indication
of the percolative scenario described above, either: the replica trick, which is the usual
means of performing the average over disorder configurations, obscures the inhomogeneous
nature of the disordered system that is crucial for the percolative transition scenario. In
addition, after transformation to lengthscales larger thanR0, the RG will take us back to
the standard model (1)–(3) ofδ-correlated disorder.

It might be possible to obtain better results using functional RG methods, i.e. not only
a renormalization of parameters such asλ andu from (2) and (3), but one that also allows
a variation of the functional form of the correlation functionG(r/R0) from (5) under
renormalization. However, such techniques have so far only been used successfully in
lower-dimensional systems, for example, for an analysis of the wetting problem; for bulk
problems, an exact functional renormalization can be formulated, but is very hard to apply
in practice [33].

Pure systems with a multicomponent order parameter (XY , Heisenberg etc) have
a negative specific heat exponentα, and the Harris criterion (as well as explicit RG
calculations) would support the doubts whether a percolative transition can appear in these
models that were mentioned in section 4.2. Nevertheless, the Harris criterion does not
provide us with a conclusive result confirming or excluding the possibility of a percolative
transition, and again the RG cannot be expected to describe such a transition, either.

There is a reason for the failure of the Harris criterion (and the standard RG procedure)
to identify critical behaviour of a percolative type: the underlying assumption that there
is only one relevant lengthscale in the system, the thermal correlation length. All other
lengthscales, including scales characterizing a nontrivial ground state of the system, are
deliberately neglected if the disorder is modelled asδ-correlated, and of course the RG
procedure by itself does not produce any new lengthscales, either. It does lead to a self-
consistent description of the transition, but this simplified picture may not apply to all types
of disorder.

In the previous sections, for example, we have demonstrated how disorder with a
finite characteristic lengthscaleR0 can lead to the appearance of adiverging ‘geometric’
lengthscale in the system, the percolation connectivity lengthRp(T ) of clusters of ordered
regions. So the LS model illustrates a limitation of the standard procedures. For a
more careful treatment of disordered systems, one must first take into account geometrical
lengthscales associated with the disorder. Then one must check explicitly whether the critical
behaviour of the system turns out to be asymptotically independent of such geometrical
scales. Only then can one return to the simpler model ofδ-correlated disorder; in other
cases, as for the LS model considered here, such a simplification is not possible.

5. Summary and discussion

The analysis of the disordered Ising model with two disorder parameters (5), one of them a
finite disorder correlation length, revealed a critical behaviour qualitatively different from the
usually considered case ofδ-correlated disorder. Both in a very specific version of this two-
parameter model and in a more general context we showed that nontrivial, inhomogeneous
and temperature-dependent ground states have to be accounted for, in contrast to the usual
transition scenario driven by thermal fluctuations around a spatially homogeneous ground
state.

This inhomogeneous ground state is produced by the appearance of locally ordered
regions (nonzero solutions of the nonlinear stochastic Ginzburg–Landau equation). Its
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temperature dependence can be discussed in the terms of a percolation phenomenon. The
topological properties of the corresponding percolation clusters play a crucial role for the
formation of long-range magnetic order and the critical behaviour near the transition: in the
immediate vicinity of the real transition point broken untypical red sites of the percolation
cluster determine the long-range domain structure of the magnetic order parameter. These
broken sites occupy a very small volume fraction of the sample, in fact, not only a small
fraction of the ordered regions as a whole, but even a small fraction of all red sites, too. The
relevant lengthscale for the transition is not the correlation lengthξ of thermal fluctuations
(as in the case ofδ-correlated disorder) but rather the percolation connectivity length, and,
in the immediate vicinity of the critical point, the average size of magnetic domains on the
percolation cluster.

This percolative aspect of the phase transition problem cannot be described appropriately
within the one-instanton approximation for the replica Hamiltonian which has been the usual
tool for the discussion of the influence of nonzero, inhomogeneous ground states far above
the transition.

It is interesting to note the qualitative resemblance between some of our results with
experimental observations of the magnetic phase transition in [34] and other materials
including perovskites [35, 36] (where the transition in the undisturbed system is weakly first
order). In these materials scattering experiments revealed the existence of two lengthscales
close toTc. One of them can be interpreted as the usual correlation lengthξ of thermal
fluctuations. A second, much larger lengthscale is present in addition toξ . It appears to
be related to random elastic stress fields introduced by disorder, e.g. dislocations. These
two lengthscales are not observed in macroscopically separated regions of the samples; they
have been found to co-exist even in very thin films [37] where the random stress field is
due to a lattice mismatch between the film and substrate. As both dislocations and lattice
mismatch would introduce disorder with lengthscales much larger than the lattice constant
it is tempting to speculate that the second, large lengthscale may be connected with the
appearance of locally ordered regions similar to those described in our discussion of the LS
model. Percolation of such regions has also been discussed as a mechanism by which the
presence of disorder could turn a weakly first-order transition into a continuous one [35].

A different aspect of the existence of nontrivial ground states has been discussed recently
[16] within the context ofδ-correlated disorder: the fact that there is a macroscopic number
of nearly degenerate such ground states (for example, in the Ising case in each ordered
region the order parameter can have two different signs). Methods from the theory of spin
glasses (where the existence of multiple ground states plays a crucial role) have been used
to show the existence of RSB even in the weakly disordered Ising model.

However, in these considerations the temperature dependence and the nontrivial
topological percolation structure of the ground states has not entered in any obvious way.
Taking into account our results on these properties of the ground states of the LS model one
may expect a connection between the value of the Parisi parameter in the RSB mechanism,
which is related to the topology of the system’s free-energy landscape, and the nontrivial,
percolative structure of the order parameter on the locally ordered regions.

The critical behaviour of the LS model is determined by the stochastic geometry of the
ferromagnetically ordered clusters. We have demonstrated the crucial role of red sites on
these clusters and indicated the possible influence of other, multiply connected sites. In
our opinion the importance of the geometrical structure of the percolation cluster for the
phase transition in disordered systems warrants further investigation of the statistics of such
clusters. So far only limited progress has been made in this respect, [24, 27, 30, 38] although
geometric concepts have been applied to study various lattice spin models. With similar
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applications in mind we would also hope to encourage a renewed effort to investigate the
critical behaviour of spin models on deterministic fractals. On these fractals properties such
as ramification and lacunarity and their influence on critical behaviour can be discussed
explicitly.

Our discussion of long-range correlated systems with explicit lengthscales of the disorder
may be helpful for the understanding ofδ-correlated systems and their critical behaviour, as
well. In fact, the original lattice versions of these systems may possess their own generic
lengthscales of disorder which become evident if one classifies spins as so-called bootstrap
spins according to the numberz of their nearest neighbours [39, 40]. Clearly, the interesting
values ofz are between 2 and 6 (in the simple cubic lattice) since only then may one have
large clusters and percolation phenomena of bootstrap spins. The corresponding percolation
probabilitiesp(z)c are in the rangepc 6 p(z)c 6 1 with pc(z − 1) 6 p(z)c , wherepc is the
critical concentration of the conventional percolation problem.

Clusters of bootstrap spins (at least for large enough values ofz) are regions of increased
local critical temperatureT (z)c > 〈Tc(r)〉. At their percolation concentrations the size of
these clusters diverges and the set of bootstrap spins forms a fractal, self-similar part of the
system with a critical temperatureT (z)c . For such fractals it has been shown [41, 42] that
several discrete spin models have phase transitions at finite temperatures and their critical
exponents depend on the whole set of fractal characteristics, including the connectivity and
lacunarity besides the Haussdorf dimensiondf . The role of bootstrap spin clusters near
their percolation pointp(z)c may be similar to that of ferromagnetic cells in the LS model.
In both cases geometric lengthscales appear and are concurrent to or even dominate the
thermal correlation length.

Bootstrap percolation clusters are also readily identified as regions of the system where
a turnover of all spins of the cluster including the boundary spins does not appreciably
change the energy but leads to a new, nearly degenerate ‘ground state’. In this respect
they are equivalent to the locally ordered regions in the LS model discussed above. Thus,
a multiplicity of ground states appears to be a generic property of disordered systems at
concentrationsp 6 pc(z = 6) where fractal clusters of bootstrap spins become existent.
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Appendix A. Domain wall in an untypical cell

In this appendix we calculate the free-energy cost for placing a domain wall in a red bond
of a locally ordered cluster. In one dimension we have to solve the saddle-point equation

− ϕ′′ + τ(x)ϕ + λ0ϕ
3 = 0 (A1)

with ϕ′′ = d2ϕ/dx2. The restriction to one dimension does not change the qualitative
results of our considerations, and for large cell diameterR we may recover the general
d-dimensional case by multiplying the expressions for the free energy by a factor ofRd−1.

If we multiply (A1) by ϕ′ and integrate from−∞ to x we find a ‘constant’ of integration

− 1
2ϕ
′2+ 1

2τ(x)ϕ
2+ 1

4λϕ
4 = C +

∫ x

−∞
1
2τ
′(x)ϕ2 dx = C + I (x). (A2)
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Of course, this is only really constant in intervals whereτ(x) does not change.

A.1. Relevant lengthscales

Let us first consider the simple situation whereτ(x) is a step-like function with the value
−τ1 < 0 for x < 0 and 0> −τ2 > −τ1 for x > 0 (for a start the parametersτ1 andτ2 are
arbitrary, but in the situation we are most interested in,τ2� τ1 stand for the most probable
reduced temperature inside and outside of an untypical cell just as in the main part of this
article). Then the exact solution of (A1) is given by [43]

ϕ1 = −
√
τ1/λ tanh(x

√
τ1/2+ c1) for x < 0 (A3)

ϕ2 =
√
τ2/λ coth(x

√
τ2/2+ c2) for x > 0. (A4)

The parametersc1, c2 are determined requiring continuity ofϕ at x = 0:

c1 = artanh(−
√
λ/τ1ϕ0) c2 = arcoth(

√
λ/τ2ϕ0). (A5)

Hereϕ0 = ϕ(0), and evaluating (A2) atx →±∞ we obtain

− τ 2
1

4λ
+ τ1− τ2

2
ϕ2

0 = −
τ 2

2

4λ
, (A6)

soϕ0 =
√
(τ1+ τ2)/2λ.

Obviously for similar values ofτ1 andτ2 the solution goes to the mean-field value for
large |x| on a lengthscale 1/

√
τ1 resp. 1/

√
τ2. However, forτ2 � τ1 the prefactor ofϕ2

given in (A4) is very small whileϕ0 is not, so the argument ofϕ2 must be small, as well.
Then we can expand coth(x) ≈ 1/x to obtainc2 ≈

√
2τ2/τ1 and

ϕ2 ≈
√
τ1/2λ

1

1+ x√τ1/2
. (A7)

So in this caseϕ2 drops to
√
τ2/2λ slower than exponentially, reflecting the divergence of

the lengthscale 1/
√
τ2 as τ2 → 0. However, (A7) still contains the scale 1/

√
τ1. So ϕ2

will become small on a lengthscale 1/
√
τ1, although not exponentially fast. This fact can

be used to obtain a first, qualitative result.

A.2. Qualitative result

A red bond of sizeR between two locally ordered regions may be described setting
τ(x) = −τ1 for |x| > R/2 andτ(x) = −τ2 for |x| < R/2.

If the red bond contains a typical cell,τ1 andτ2 will be similar. The solution of (A1)
will look as shown in figure 3.

Both the antisymmetric solutionϕ− with a domain wall and the symmetric solutionϕ+
without one reach the mean-field value

√
τ2/λ within the red bond rather close to the edge

of the red bond, as the relevant lengthscale 1/
√
τ(x) is small both outside of and within the

red bond. So a domain wall within the red cell is essentially a Bloch wall that is a solution
of (A1) for constantτ . Its free energy differs from that for the symmetric solution by [43]

1Ft = 2
3

√
2τ 3

2/λ
2. (A8)

However, if the red bond is untypical (and the neighbouring ordered regions are typical,
otherwise they would count as part of the red bond), we haveτ2 � τ1. Then as a first
approximation bothϕ− andϕ+ will go to (nearly) zero on the (short) lengthscale 1/

√
τ1.
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Figure 3. Domain wall in a typical red bond.ϕ− is the antisymmetric solution with a domain
wall, ϕ+ is the symmetric solution without one. The areas whereϕ is not constant extend over
a lengthscale(τ (x))−1/2.

This situation is shown in figure 4. Obviously to this approximation the solutions only
differ by the sign forx > 0, so they have the same free energy and

1Fu ≈ 0. (A9)

A.3. Exact solution

The above already illustrates the result1Fu � 1Ft used in the main part of this paper.
However, it is also interesting to look at the exact solution of (A1) in an untypical red bond
to find the dependence of the small1Fu on the parameterR

√
τ1 which is large becauseτ1

describes a typical cell according to (21).
To this purpose we briefly present the exact solution of (A1) for an untypical red cell,

omitting most of the details of the calculations. As the lengthscale 1/
√
τ2 is then irrelevant

anyway we can simplify the calculations by settingτ2 = 0 and writingτ instead ofτ1.
For x < −R/2 we obtain, just as in the simpler case considered above,

ϕ± = −
√
τ/λ tanh(x

√
τ/2+ c±) (A10)

with c± = artanh(ϕ0±
√
λ/τ), whereϕ0± = ϕ±(−R/2) is to be determined later. For

x > R/2 the same solution appears, with signs that can be read off from figure 4.
In intervals whereτ(x) (and, consequently,I (x)) is constant one can rearrange (A2) to

obtain an expression for dϕ/dx and separate variables to obtain the integral equation

x − x0 =
∫ ϕ(x)

ϕ(x0)

dϕ√
τ(x)ϕ2+ λ

2ϕ
4− 2(C + I )

. (A11)

Inside the red bond the sign ofC + I± can be determined from (A2) atx = 0 as

C + I+ = λϕ4
m/4> 0 (A12)
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Figure 4. Domain wall in an untypical red bond. As a first approximation the two solutions
only differ by their sign forx > 0. The only relevant lengthscale is that connected with the
reduced temperature outside of the red bond,(τ (x →∞))−1/2.

C + I− = −ϕ′−(0)2/2< 0. (A13)

Hereϕm = ϕ+(0) is the minimum value ofϕ+ within the red bond.
Expression (A11) withτ(x) = 0 then leads to elliptic integrals which can be solved

with appropriate substitutions [44] forϕ to obtain solutions in terms of the Jacobian elliptic
function nc(x| 12). For the sake of brevity we write nc(x) instead of nc(x| 12). Then

ϕ+(x) = ϕmnc(z+(x)) (A14)

ϕ−(x) = B
(

nc(z−(x))− 1

nc(z−(x))+ 1

)1/2

. (A15)

The parameters areϕm = (4(C + I+)/λ)1/4 andB = (−4(C + I−)/λ)1/4, and z±(x) are
shorthand for the arguments of nc,z+(x) = xϕm

√
λ in ϕ+ andz−(x) = xB

√
2λ in ϕ−.

The parameters are related to the value ofϕ0± at the edge of the red bond viaC + I±:

λϕ4
m/4= C + I+ = −

τ 2

2λ
+ τϕ2

0+ (A16)

−λB4/4= C + I− = − τ
2

2λ
+ τϕ2

0− . (A17)

In terms ofz± = z±(−R/2) this yields

ϕ̄m = − 2z+
R
√
τ
; ϕ̄0+ = 1√

2

√(
2z+
R
√
τ

)4

+ 1 (A18)

B̄ = −
√

2z−
R
√
τ
; ϕ̄0− = 1√

2

√√√√1−
(√

2z−
R
√
τ

)4

. (A19)

The bar denotes normalization with respect toϕ±(x →−∞) =
√
τ/λ, so ϕ̄ = √λ/τϕ etc.
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We can use these expressions to write the squares of the solutions (A14) and (A15) at
x = −R/2, (

2z+
R
√
τ

)2

+
(
R
√
τ

2z+

)2

= 2nc2(z+) (A20)

(
R
√
τ√

2z−

)2

−
(√

2z−
R
√
τ

)2

= 2
nc(z−)− 1

nc(z−)+ 1
. (A21)

These equations must be solved numerically to findz± and the other parameters. However,
asR
√
τ is large the solutions will be close to the singularity of the expressions on the right

hand side of (A20) and (A21), so it is clear thatz+ ≈ 1.8 andz− ≈ 3.6.
Using these values we obtain

ϕ̄2
0+ − ϕ̄2

0− =
1

2

( √
2

R
√
τ

)4

(4z4
+ + z4

−). (A22)

So the difference between the two solutions is small atx = −R/2 and they are both close
to the solution found from (A6) for the simpler case of one step inτ(x), i.e. ϕ̄0+ ≈ ϕ̄0− ≈
1/
√

2. This impliesϕ̄0+ − ϕ̄0− ≈ (ϕ̄2
0+ − ϕ̄2

0−)/
√

2 and ϕ̄3
0+ − ϕ̄3

0− ≈ 3(ϕ̄2
0+ − ϕ̄2

0−)/2
√

2.
These results are needed in the next section where we calculate the free-energy difference
between the two solutions.

A.4. Free energy

The expression for the free energy of a given solution of (A1) can be simplified using (A2):

F [ϕ] =
∫ ∞
−∞
(ϕ′2+ C + I (x)) dx. (A23)

If we can express the derivativeϕ′ in terms of the original solutionϕ this simplifies further,
as ∫ x2

x1

ϕ′2 dx =
∫ ϕ(x2)

ϕ(x1)

ϕ′(ϕ) dϕ. (A24)

There are three contributions to the free-energy difference1F = F− − F+. The first
comes from the intervals|x| > R/2. Thereϕ− andϕ+ have the same functional form, but
are shifted apart byc− − c+ in the x-direction. We note thatϕ′ ∝ 1/ cosh2 ∝ (1− tanh2)

to apply (A24) and obtain, using the results from the preceding section,

1F1 = 2
∫ ϕ(c−)

ϕ(c+)
ϕ′(ϕ) dϕ (A25)

=
√

2τ 3/λ2(ϕ̄0+ − ϕ̄0−)− (ϕ̄3
0+ − ϕ̄3

0−)/3 (A26)

=
√

2τ 3/λ2
4z4
+ + z4

−
4
√

2(R
√
τ)4

. (A27)

In these intervalsI (x) is the same for both solutions, so there is no contribution to1F1

from
∫
(C + I ) dx.

Within the red cellI− 6= I+, so there is a contribution

1F2 = R(I− − I+) = R
√
τ√

2

√
2τ 3/λ2(ϕ̄2

0− − ϕ̄2
0+)/2 (A28)

= −
√

2τ 3/λ2
4z4
+ + z4

−
4(R
√
τ)3

. (A29)
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The last contribution comes from the difference between the solutions within the red
cell. Using the relations between the Jacobian elliptic functions nc, sc and dc [44] it is easy
to write ϕ′± as functions ofϕ± and use (A24). After some algebra and the integration we
obtain as a final result

1F3 =
∫ R/2

−R/2
(ϕ′2− − ϕ′2+) dx (A30)

=
√

2τ 3/λ2

(
4z4
+ + z4

−
2
√

2(R
√
τ)4
+ 2

4z4
+ − z4

−
3(R
√
τ)3

)
. (A31)

Thus, the leading contributions to1F are O(1/(R
√
τ)3) and come from1F2 and the

second term in1F3. They are both connected by the fact that the solutionsϕ− and ϕ+
differ outside and at the edge of the red bond. This is remarkable because the ‘obvious’
way to estimate1F would be to focus on the contribution from

∫
(ϕ′2− − ϕ′2+) dx within

the cell. In the exact solution this term only contributes a small correction O(1/(R
√
τ)4).

In addition, this latter contribution calculated with a simple linear superposition ansatz
ϕ± = ϕ1± ϕ2 with suitably chosenϕ1 andϕ2, for example, using (A7) yields1F ∝ 1/R2

which is different from our exact result. Such a superposition ansatz also overestimates the
differenceϕ0+ − ϕ0− of the solutions at the edge of the red bond to be O(1/R) instead of
O(1/(R

√
τ)4) in our exact result.
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